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A B S T R A C T  

The  average distance theorem of Gross implies tha t  for each real N-  

dimensional  Banach space (N > 2) there is a unique positive real number  
r(E) with the  following property:  For each positive integer n and for all 

(not  necessarily dist inct)  Xl,X2 . . . . .  x~ in E with ]]Xl ]1 = IIx2II . . . . .  

Ilxnll = 1, there exists an x in E with Ilxll = 1 such tha t  

n 

i = 1  

The main result of this paper  shows, tha t  r(E) <_ 2 - 1 I N  for each real N-  
dimensional  Banach space E (N ~ 2) with the  so-called quasihypermetr ic  

proper ty  (which is equivalent to E is Ll -embeddable) .  Moreover, equality 

holds if and only if E is isometrically isomorphic to R N equipped wi th  
the  usual 1-norm. 

1. I n t r o d u c t i o n  

In 1964, O. Gross published the following remarkable result: 

THEOREM A ( 0 .  Gross): Let (X, d) be a compact connected metric space. Then 

there is a. unique positive real number r(X, d) with the following property: For 

each positive integer n and for all (not necessariIy distinct) x l , x2 , . . .  ,x,~ in X,  

there exists an x in X such that 

1 n 

a(xi, x / =  r(x, all. 
n 

i : 1  
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For a proof of this Theorem see [11]. An excellent survey on this topic is given 

i n  [81. 

Remark 1: (a) In the situation of Gross's Theorem we say that  (X, d) has 

the average distance property with rendezvous number (or averaging distance 

constant) r(X, d). 
(b) D(X, d)/2 <_ r(X, d) < D(X,d), where D(X,d) denotes the diameter of 

X.  For a proof see Theorem 2 in [11]. 

(c) Graham Elton first generalized Gross's Theorem in the following sense (for 

a proof see [8]): Let (X, d) be a compact connected metric space and M 1 (X) be 

the set of all regular Borel probability measures on X; then r(X, d) is the unique 

positive real number with the following property: For each # in M I ( X )  there 

exists some x in X such that 

z d(X, y) d#(y) = r( Z, d). 

Moreover, there are #0, v0 in MI(X) with 

s e(x,y) e,0(y) < T(x,e) < s e(x,y) 

for all x in X. 

Now let E be a real n-dimensional Banach space (n > 2). Consider the compact 

connected metric space (SE, d) where SE = {x E E, I]xl[ = 1} denotes the unit 

sphere of E and d is the norm induced metric on SE. 
In [28] the rendezvous number r(E) of S is defined as 

r(E) = r(SE, d). 

For example, in [20] Morris and Nickolas proved that 

2n-1 [r (~)] 2 
r(12(n)) = x/-~r ( ~ : ! )  , for all n ~_ 2 

and in [28] it is shown that  

1 
~t~ ,~" ' '"  = 2 - - ,  

n 

3 
r(l~(n)) = ~ ,  for all n > 2, 

where IP(n) denotes R '~ equipped with the usual p-norm. 

Recently, the concept of rendezvous numbers was generalized to Banach spaces 

of infinite dimension. See {3], [19], [28] and [30]. 
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This paper  deals with a question given in [28]: Let E be a real n-dimensional 

Banach space (n > 2). Is it true, that  

r(E) < 2 - - 1  (=r(ll(n))) f o r a l l n > 2 ?  
n 

1 Up to now the conjecture r(E) < 2 - ~ ,  n > 2 was proved in the following two 

c a s e s :  

First it was shown in [28] that  r(E) < 3 for all two dimensional real Banach 

spaces and second the inequality r(E) < 2 - 1/n was established in [29] for all 

n k 2 under the assumption that  E has a 1-unconditional basis. Moreover, in 

both cases it was proved that  equality holds only in the case E -- ll(n) up to 

isometric isomorphisms. 

The main part  of this paper  establishes the inequality r(E) < 2 - 1/n for 

another class of finite dimensional Banach spaces, namely the class of all real n- 

dimensional Banach spaces (n > 2) with the so-called quasihypermetric property. 

Let us remark that  quite recently a general upper bound for r(E) was 

established in [3]: 
1 

~ ( E )  < 2 - 
2 + ( n -  1)2 n+ l '  

for all real n-dimensional Banach spaces E (n > 2). (For a proof see 

Proposition 7.3 in [3].) 

The remaining part  developes a general inequality concerning averaging 

distances in two dimensional real Banach spaces: 

It will be shown that  for each compact convex subset K of a two dimensional 

real Banach space the inequality 

1 g D(g)  p(g) 
N 2 E [[xi - xj[[ < ~ + 1-----6 

i,j=l 

holds for all N _> 1 and x l , x2 , . . .  ,xN in K,  where D(K) denotes the diameter  

of K and p(K) denotes the Minkowski perimeter of K.  (Note the connection to 

a result given by L. Fejes Tdth in [10] for K the Euclidean unit ball in 11(2.) 

2. Basic background and notation 

Let (X, d) be a compact connected metric space. The rendezvous number r(X, d) 
is defined as in Chapter  1 of this paper. With M +(X)  we denote the space of 

all finite non-negative regular Borel measures on X. The subspace M I ( x )  of 

M + (X) consists of all non-negative regular Borel measures on X with total  mass 

one (the probabili ty measures on X).  
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A metric space (X, d) is called quasihypermetric if 

~ cicjd(xi,xj) ~_ O, 
i,j=l 

for all n in N, X l , . . . , x ~  in X and all Cl , . . . , c~  in R with cl + " "  + c ~  = 0. A 

normed linear space (X, II. II) is called quasihypermetric if the metric space (X, d), 

where d denotes the norm induced metric on X,  is quasihypermetric. Recall the 

following examples for quasihypermetric spaces: 

(1) The Euclidean space ]R n for all n _> 1. 

(2) R ~ equipped with the usual p-norm for 1 < p < 2 and all n > 1. 

(3) All two dimensional real Banach spaces. 

(For a proof of (1) and (2) see [25], for (3) see [32] and Theorem B mentioned 

below.) 
The spaces R ~ equipped with the usual p-norm for 2 < p _< ec and all n > 3 

are not quasihypermetric.  (For a proof see [9] and Theorem B.) 

There is a wide range of literature concerning equivalent properties to the 

quasihypermetric property in classical geometry and functional analysis. For 

example, see [5], [6], [9], [12], [13], [14], [15], [18], [22], [24], [25] and [32]. 

Collecting some of these results we have: 

THEOREM B: Let n > 1 and consider some norm I1.11 on lt~ ~. The following 

assertions are equivalent: 

(1) The n-dimensional real Banach space (R '~, I].11) is quasihypermetric. 

(2) The n-dimensional real Banach space (R ~ , II. II) is isometrically isomorphic 

to a subspace of Ll[O, 1]. ((N ~, I1.11) is Ll-embeddable.) 

(3) The norm I1.1[ admits a so-called Levy representation: 

There is some # in M+(g/n_l )  on the Euclidean unit sphere f~n-1 of  Rn such 

that 

Ilxll = ]_ [(xly)ldl~(y), for all x in R n, 

where (.I.) denotes the usual inner product on N n. 

Wi thout  loss of generality one can assume that the measure # in M+(f~,~_l) is 

even (Iz(A) = # ( - A )  for all Borel subsets A of f~,~-x, where - A  = 

{x E f],~-l, - x  E A}).  Under this additional assumption # is unique. 

(4) The closed unit ball of the dual space ({x E ~n ,  [[xH, <_ 1}) is a zonoid. (A 

zonoid is the limit body, with respect to the Hausdorff metric, of  a sequence 

of  zonotopes, where a zonotope is defined a~ the Minkowski sum of a finite 

number of  line segments.) 
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For a proof  combine Proposi t ion 1, Corollary 1.1 and Corollary 1.3 in [25] with 

Corol lary 2.6 and Corollary 6.2 in [5]. For uniqueness see formula (1.1) in [24] 

and Theorem 2.8 in [5]. 

Now let E be a real n-dimensional  Banach space (n >_ 2). Wi th  

SE = {x E, Ilxll = 1} 

we denote  the unit  sphere of S. The  rendezvous number  r ( E )  is defined as in 

Section 1 of this paper.  

Remember  a basis a l , . . . ,  a,~ in E is called an Auerbach basis of E if 

m a x  [ai[ _< ] [ s i a  I - I - ' - -  -t- anan[] < ] a l [ - b ' ' "  q - I ~ ] ,  
l<i<n 

for all ~I,... ,~n in ~. 

For n _> 1 and 1 <_ p _< co let IP(n) = (R ~, 11.11p), where T].llp denotes the usual 

p-norm on R n. 

Finally, the canonical basis of R n is denoted by el,..., en and (.I-) is the usual 

inner product on N n. 

3. T h e  r e s u l t s  

First  we obta in  

THEOREM 1 : Le t  E be a real quas ihypermetr ic  Banach space. Then  for all N > 1 

and e lements  x l ,  �9 �9 �9 XN in X we have 

N N 
1 1 N 1 

2 N  
i=1 i=1 

A Y  

for all x in P ( x l , . . . ,  x N )  C_ E defined as 

P ( X l , . . . ,  XN) = a i X i ,  such that  a l , . . . ,  a N  E R wi th  m a x  I~1 < 1 . 
l<i<N 

From this we get 

THEOREM 2: Let  E be a real n-dimensional  quas ihypermetr ic  Banach space and 

let  a l , . . . ,  a,~ be an Auerbach  basis o f  E .  Then  we have 

1 
[Ix - a i l [  + [[x + ai[[ < 1 + n - 1 ][xt[, 

2 n  i----i -- 

for all x in E with Ilxll 1. 
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Remark 2: The inequality established in Theorem 2 is sharp in the following 

sense: 

For each E there is at least one x (for example x = 0) such that  equality 

holds. For E = ll(n) and the canonical basis we have equality for all x with 

HXH1 ~ 1 (see Lemma 2, (1) of this paper). Moreover, if we left the quasi- 

hypermetr ic  property the result is false in general: 

Let E = l~(3) ,  al  = ( - 1 ,  1, 1), a2 = ( 1 , - 1 , 1 ) ,  a3 = (1, 1 , - 1 ) .  It  is easy to 

see, tha t  a l ,  a2, a3 forms an Auerbach basis of l ~ (3) but 

3 
1 2 for x = (1, 1, 1). IIx - adl  + IIx + airl = 2 > 1 + 5, 

i= l  

Then we prove 

THEOREM 3: Let E be a real n-dimensional quasihypermetric Banach space 

(n _> 2). Then we have 
1 

r(E) <_ 2 - - 
n 

and equality holds K and only i f  E is isometrically isomorphic to 11 (n). 

Now let E be a two dimensional real Banach space. Recall the definition of 

the so-called Minkowski perimeter p(K) of a compact  convex subset K of E: 

p(K) = sup l (P) ,  
P 

where l(P) denotes the sum of the lengths over all sides of a convex polygon P 

inscribed in K ,  all lengths measured in the norm induced metric. 

The next result is a generalization of a Theorem of L. Fejes Tdth  (see Theorem 1 

in [10]) concerning averages of distances in the Euclidean plane. We have 

THEOREM 4: Let E be a two dimensional real Banach space and let K be a 
compact convex subset orE. Then for all N > i and x l , . . .  ,XN in K we have 

1 N D(K) p(K) 
N 2 E II:ri-xJl[<- ~ +  1----6' 

i , j = l  

where p(K) denotes the Minkowski perimeter and D(K) the diameter of K. 

Various papers deal with questions concerning another interesting constant 

involving averages of distances: 

Let (X, d) be a compact  metric space and define 

N 
1 

MtX,  d) = sup N-~ E d(xi,xj). 
N>_I,xl, . . . ,xNEX i . j= l  
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For example, see [1], [2], [4], [7], [10], [16], [21], [23], [26] and [31]. 

As a simple consequence of Remark 1 (c) and the fact that 

M(X,d)  = sup / x  I x  d(x,y)d#(x)d#(y) 
ItEMI(X) 

we have 

131 

[31].) 
Now in [28] it was shown that 

r(E) <_ 1 + -  
v(OE) 

16 ' 

for all two dimensional real Banach spaces (p(OE) is the Minkowski perimeter 

of the closed unit ball OE of E). 

Applying Theorem 4 we obtain the stronger inequality: 

C O R O L L A R Y  1: Let E be a two dimensional real Btmach space. Then we have 

M(SE, ]l.ll) < 1 + p(OE___~) 
- 1 6  ' 

p(OE) defined as above. 

Finally, let us draw the reader's attention to an unsolved problem in two 

dimensional Euclidean distance geometry: 
What  is the value of 

N 
1 

~/(12(2)) = sup y--2 ~ II ~, -x~]12 ? 
N ~ I ,  Xl,... ,~N ER2 i , j= l  

II~i-~j 112_< 1 

(For more detailed information see, for example, [16].) 

It is conjectured (see [26]) that 3,(/2(2)) = M(T, 11.112) where T denotes the 
Reuleaux triangle of diameter one (numerical calculations show that  

M(T, 1I.I[2) ~ o, 6675277). 

In [21] the positive real constant k2 is defined as 

k2 = sup r(X, 11.112), 

where X ranges over all compact connected subsets of the Euclidean plane with 
diameter one. 

d) < MiX, d) 

for all compact connected metric spaces. (For details and the relation between 

these two constants in quasihypermetric compact connected spaces, see [16} and 
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The authors showed 

0, 6675276 ~ k2 _~ 0, 7182336. 

We improve the given upper bound: 

C O R O L L A R Y  2 :  

1 ~ (~ 0,6963495). k2 _< 7(/2(2)) _< ~ + i6  

Finally, we note that if we replace the Euclidean distance by the 1-norm 

induced distance and ask for the analogous constant 7(/1(2)), the problem turns 

out to be much easier: 

C O R O L L A R Y  3 :  Le t  E be a two dimensional real Banach space. Define 

Then  we have 

(1) 7(E) < 3 

(2)  (l (211 = 

= 

N 
1 

sup N2 I l x i  - xjll. 
N~I ,  Xl,...,Z~NEE 

IIz i - x j  II < 1 i , j = l  

4. The  proofs  

We need the following 

LEMMA 1: Le t  n >_ 1 and a l , . . .  , a n , a  in R wi th  a > O,a~ >_ O, foraH 1 < i < n 

and a <_ a l  + . . .  + an.  Then  we have 

1 ~-~ max(a~,a)< 1~-~ n - 1  
- -  _ - a i  + a .  
n n n 

i = 1  i = 1  

Moreover,  equal i ty  holds i f  and only  i f  

1.  ( R I = ' ' ' = ( R n  = ( R = O .  

2. There  is some  1 <_ io <_ n, such that  

(Rio > 0 and (R1 = " ' "  ~ (Rio--1 = (Rio-HI "= " ' "  = (Rn = O. 

3. There  are at  least two indices 1 <_ il < i2 ~ n, such tha t  

(Ril > O, (R~2 > 0 and: (R = 0 or (R = (R1 + "'" + an.  

The proof is straightforward. 

P r o o f  o f  Theorem  1: Consider the finite dimensional subspace of E generated by 
the elements xl , . .  �9 XN. The definition of the quasihypermetric property implies 
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tha t  this subspace is quasihypermetr ic  too. Now since each finite dimensional real 

Banach space is isometrically isomorphic to some (R ~, I!-11) (n >_ 1, 11-11 a norm on 

IR n) and of course the quasihypermetr ic  proper ty  is invariant under  isometries, 

it remains to show that :  

Let  n > 1 and II.ll be a quasihypermetr ic  norm on ~n.  Fur thermore  let N ~ 1 

and yl, . .  �9 YN be elements in R n. Then  we have 

N 1 N N - 1  
1 E IlYi - xll + IlYi + xll < ~ E IlYill + ~ l l x l l ,  

2 N  i=1 i=1 

for all x in P(Yl , . . . ,  YN) C R n defined as 

P(Yl , . . . ,YN)= c~iyi, s u c h t h a t c ~ l , . . . , C ~ N E R a n d  max  Ic~il_<l . 
I<i<N 

~, i=1 

By Theorem B (3) there exists some # in M + ( f t n _ l )  on the Euclidean unit  sphere 

f t~ - i  of N n such tha t  

]]xll = [ ](x]y)]d#(y), for all x e ]~n. 
gst n - - 1  

Now let x E P(Yl, . . .  ,YN) and y E f t~- l .  Since x E P ( Y l , . . .  ,YN) we can find 
N 

some a l , . . .  , a n  E N with m a x l < i <  N Io~il < 1 such tha t  x = ~~i=laiYi. Hence 

we get  

i=~l N I(xlY)I = c~i(YilY) <_ E I(YilY)I. 
i=l 

Take a = {(xly)l and c~i = I(YilY)] for 1 < i < N.  Lemma 1 implies tha t  

1 N ~ 1 g 
max(l(Y tY)[, I(xlY)l) -< I(YdY)I + I(xlY)l - 

i=1 i=1 

Therefore 

1 N 1 N N - 1  
E I(Y~ - xlY)I + I(Yi + xfY)l <- -~ E I(YilY)I + N I(xlY)I' iN i=1 i=1 

for all y in f ~ - l .  

In tegra t ion over f~,~-i with respect to # finishes the proof. | 

Proof of  Theorem 2: As mentioned in the proof  of Theorem 1 we can assume 

tha t  a l , . . . ,  am is some Auerbach  basis of the space (R n, I1.11) (n _> 1 and II.II a 
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quas ihypermetr ic  norm on W~). Since a l , . . . ,  an is an Auerbach basis of ]R n the 

subset P ( a l , . . . ,  an) defined in Theorem 1 fulfills the relation 

P ( a l , . . . , a n )  ~_ {x e Rn, [[x][ _< 1}. 

Of course []al[[ . . . . .  ]]a~[[ = 1 and hence the result follows by Theorem 1. 
| 

Before showing Theorem 3, we prove the following lemmata:  

LEMMA 2: Let n > 2. Then we have 

1 ~ - ~  n - 1  
(1) 2n [Ix ei[[ + [[x+ei[[ 1 + n [[x[[' 

i = 1  

for  all x in l ' (n)  with Ilxll~ _< 1. 

(2) ~( l lx  - ~oll + IIx + ~o[I) <_ 2 
1 

Z n 

for all x in l l (n)  with Ilxll = 1, where xo in ll(n) is defined as Xo = ( ~, . . . , 1).  

Moreover, equality holds if  and only if  x E { e l , . . . ,  e n , - e l , . . . , - e n } .  

The  proof  is straightforward.  

LEMMA 3: Let u be a probabiBty measure on the unit sphere Sz~(~) of /X(n)  

(n _> 2) and assume that 

L I Ix-yHd~' (y)  > 2 1 
n 

/ l ( n )  

for all x in Sly(n). Then we have 

1 ~ - ~  
u = ~ 5e~ + 5_~, 

i=1 

where 5~ ( 6_~,) denotes the point measure on the i-th canonical vector ei( -e~) .  

Proof: Let  xo = ( 1 / n , . . . ,  1/n). By assumption we get 

IIx0 - yll + IIx0 + yll du(y) > 2 - 1 
l~(,~) 2 -- n 

Applying L e m m a  2, (2) we obtain 

supp(u) C_ { e l , . . . ,  e m - e l , . . . , - e n } ,  
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where  supp(u)  denotes  the suppor t  of u. 
n 

Hence there  are a l , . . . ,  a~ , /31 , . . .  ,/3,~ > 0, Y~'~i=l a i  +/3i  = 1, such t ha t  

n 

i = 1  

The  a s sumpt ion  again implies 

7t  

~ ~l lek  - e~ll +/3,11ek + ~,ll > 2 - 1 
?7, ~ 

i = l  

for all 1 < k < n. 

Hence a i  _< 1/2n and/3i  < 1/2n,  for all 1 < i < n, and therefore 

1 
a l  . . . . .  c~n =/31 . . . . .  /3n = - - .  | 

2n 

LEMMA 4: Let E be a real n-dimensional quasihypermetric Banach space 

(n _> 2). Define 

N ( E )  = m a x { k  _> 2, 3 x l , . . .  ,xk �9 SE with ][xi - xj[I = [Ixi + xjl[ = 2, 

for all l < i C j < k }. 

Then we have N ( E )  < n and equality holds if  and only if  E is isometrically 

isomorphic to 11 (n). 

Proof: By T h e o r e m  B, (2) we can assume tha t  E is an n-dimensional  subspace  

of LI[0,  1]. For a rb i t r a ry  real numbers  a , /3 we have 

Is +/31 + Is -/31 -< 2(1~1 + 1/31), 

and equal i ty  holds if and only if a p  = O. In tegra t ion  of this inequali ty shows 

tha t  for every f ,  g �9 L 1[0, 1], 

[If + ~ll + l[f - gll< 2(llfll + 11911), 

and equal i ty holds if and only if f ,  g are disjointly suppor ted ,  up to a set of  

measure  zero. Therefore ,  if f ,  g are unit  vectors  satisfying tlf + VII = IIf - vii = 2 

they  are disjointly suppor ted  (up to a set of measure  zero) and,  in par t icular ,  

l inearly independent .  Hence we get N ( E )  <_ n. In the case N ( E )  = n, E contains  

n disjointly suppor t ed  functions (up to a set of  measure  zero) and therefore E 
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is isometrically isomorphic to l l (n ) .  Of course N ( I i ( n ) )  = n and hence we are 

done. 

P r o o f  of Theorem 3: Let E be a real n-dimensional quasihypermetric Banach 

space (n > 2). Choose some Auerbach basis a l , . . . ,  a,~ of E (such a basis always 

exists, a proof is given, for example, in [27]). 

Theorem 2 implies that 

1 
2n IIx - hill + Nx + hill < 2 n '  

i = 1  

for all x in SE.  Now Gross's Theorem (see Theorem A in Section 1) guarantees 

the existence of some x0 in SE,  such that 

r(E) = N ]lx0 - aiH A- Ilxo ~- hill, 
i = 1  

and hence r ( E )  < 2 - 1In .  

Lemma 2, (1) implies that  

1 n 1 
~n ~ ]lei - xl[ + ]]ei + x]] = 2 - -'n 

i = 1  

for all x in Sll(n) and therefore Gross's Theorem again leads to 

1 
r ( l l ( n ) )  = 2 - - .  

n 

Now assume that r ( E )  = 2 - 1 /n .  It remains to show that E is isometrically 

isomorphic to l l(n). 

We continue by induction on n. 

n = 2 :  
In [28] it was shown that  r ( E )  = 3 if and only if the two dimensional real 

Banach space E is isometrically isomorphic to 11(2). 

n - l ~ n :  

Choose some Auerbach basis h i , . . .  , a ,  of E and define the norm ]1.]1o on N '~ 

a s  

II(Xl,...,x )ll0 = IIX al e R ;  

then T: E --+ ]R '~, x l a l  + . . . ,+x ,~a ,~  ~-+ (Xl, . . . ,x,~) becomes an isometric 

isomorphism from E to (I~ '~, [[.H0)- 

Since the definition of r ( E )  is invariant under isometric isomorphisms, we have 
I 

the following situation (for convenience replace I].]10 by If. H): 
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Let n > 3 and I1-11 be a quasihypermetric norm on ]R n such that 

for all x in R ~ (the 

( Rn, IL-II)) and assume 

137 

Ilxllo~ _< Ilxll _< Ilxlll, 

canonical basis e l , . . . , e ~  forms an Auerbach basis of 

1 
~'((e~, lt.ll)) = 2 - - .  

n 

We have to show that (IR '~, 11.1t) is isometrically isomorphic to ll(n). 

By Theorem B, (3) there exists a unique even measure # in M+(ftn_l)  on the 

Euclidean sphere Q,~-I of IR ~ such that 

Ilx]l = ~ I(xly)ld#(y), f o r a l l x i n l R  n. 
n - 1  

For short let S = {x E R ~, Ilxll = 1} be the unit sphere of (R '~, I1.11)- Furthermore, 

define f :  S -+ R as 

1 ~-~ 
f(x) = ~nn Ilx - eill + IIx + eill' for all x in S 

i = 1  

and let 

A C S ,  A = { x � 9  f ( x ) = 2 - 1 / n } .  

By Gross's Theorem and r((]R ~, I1-11)) = 2 - ! it follows that  d is a non-empty 
compact subset of S. 

Now fix some Y0 in supp(#) " -{e l , . . . ,  e n , - e l , . . . , - e ~ }  (supp(#) denotes the 
support of #) and let a be an element of A. 

Lemma 1 implies 

n 
n - 1  

in E max(l(alY)l' l(eilY)l) <- 1_n E I(eilY)l + ~ --l(aty)[' 
i = 1  i = 1  

for all y in ~ - 1 .  

Since f(a) = 2 - 1 ~, we get 

f~  [ 1 ~-~. n - 1  1 n ] 
l (~i ly)l  + - - T - t ( a l y ) l  - - ~ m a x ( l ( a j y ) l ,  t (~i l~)l)  d , ( y )  = 0. 

,~-1 i = 1  n i = 1  

Hence Lemma 1 again leads to 

(alyo) = 0 or i(alyo)] = ~-~l(edyo)l. 
i = 1  
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n 

In the  case I(alyo)l : E ~ : I  I(e~lyo)l : Ilyolll we obtain:  
Since Yo ~ { e l , . . . , e , ~ , - e l , . . . , - e ~ }  choose il,i2 E {1 , . . . , n}  as small as 

possible, such that il < i2, (yoleil) # 0 and (yol%) r o. 

Now Ilall~ -< Ilall = 1 implies 

((al%), (al%)) = (sgn (Yol%), sgn (Yol%)) 

o r  

((ale{l), (al%)) : - ( sgn  (yoleil), sgn (yole{~)) 

and hence Ilalll > 2. 

Let z(yo) E R n be defined as 

z(yo) : sgn (Yo1%)% - sgn (yoleil)ei2 ; 

then 

z(yo) # 0 and ( z ( y o ) l a )  = O. 

For short let C = s u p p ( # ) \ { e l , . . .  , e n , - e l , . . . , - e , ~ } .  Corresponding to Yo 
in C we define 

Hyo =([Yo] -L, 11"11), 

H~(yo) =([z(yo)] -L, I1.11). 

Hy 0 and Hz(yo) are both (n - 1)-dimensional real quasihypermetric subspaces of 

( R'~, I1.11). For short let S~o be the unit sphere of H~o and S~(~o) be the unit 
sphere of Hz(yo). 

Summing up we have the following situation: 

Each y in C leads to subsets AI(y) and A2(y) of A such that 

AI(y) U A2(y) =A, 

AI(y) C/A2(y) : 0 ,  

AI(y) = {a E A, (aly) = 0} is a compact subset of the unit sphere Sy of Hy, 

A2(y) = {a 6 A, I(aly)l = IlYltl} is a compact subset of the unit sphere Sz(y) of 
Hz(y) and 

Ilalll > 2 for all a in A2(y). 

Now we consider two cases: 

(1) C -- 0 
This implies 

l ixl l = ~--~7~l(xle~)l for some "h , . . . ,%~ > 0. 
i = 1  
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n 
Since Hei]l = 1, for all 1 < i < n, we get I]x]] = E i = l  ](x]ei)] = I]Xlll and  

we are  done. 

(2) C r  

Since r ( ( R  n, ]].]])) = 2 - l /n ,  R e m a r k  l (c )  impl ies  the  exis tence of some v 

in M I ( S ) ,  such t h a t  

f s ] ] x - u H d v ( u  ) > _ 2 - 1 ,  for all i n S .  X 
n 

Hence 

fs f (u )dv(u  > 2 1 
n 

bu t  f (u)  _< 2 - ! for all u in S and  therefore we get  
n 

supp(v)  C_ A. 

FIRST STEP: We cla im tha t  0 < v(AI(v))  < 1 for all  y in C. 

Assume  t h a t  v(Al(Vo)) = 0, for some V0 in C. Since 

f s  [[x - u,[dp(u) = L []x - u'ldv(u) = /A  ,[x - u[[dv(u), 
~(vo) 

for al l  x in S,  we get  

e L 2 - - <_ Ilx - u]ldv(u), 
n 2(vo) 

for all x in S.  

Now consider  v as an e lement  of Ml(Sz(yo)). As shown before,  we know tha t  

1 
r(H,(vo)) < 2 - - -  

- n - 1  
and  hence Gross ' s  Theo rem (see Remark  1(c)) implies  some xo in Sz(yo), such 

t h a t  

A ]iX 0 -- ul]dv(u) < 2 1 
2(yo) - n - 1' 

a con t rad ic t ion  to  xo E Sz(uo) C S. 
The  case V(Al(YO)) = 1 is t r ea t ed  as the  case v(Al(Yo)) -- 0 (consider  v as an 

e lement  of Ml(Svo) ,  Al(Y0) C_ Svo ). Hence 0 < v(Al(y) )  < 1 for al l  y in C. 

Choose  some y in C. Then  we have 

fA  ]]x-  u[]dv(u) = fAI(,) ],x - u,]dv(u) + fA (v) ]]x - u,]dv(u) 

--V(Al(y))  fA ]Ix - u]]d v~--~--- 
l(y) v(A1 (y ) ) (u )  

fA ilx-ulld + v(A2(y)) ~(y) v(A2(y)) (u), 
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for all x in S. 

Now let uu �9 MI(S~)  be uy = u / , (A~(y ) )  on Sy and "z(u) �9 Ml(Sz(y) )  be 

Vz(u) = t~/v(A2(y)) on Sz(u). Hence we obtain the formula 

(.) 2 -  1 <~ ~,(A~(y)) f s  iix_ ulld~y(U) + u(n2(y)) fs  f lx-  ulld~,~(y)(u). 

for all x in S and all y in C. 

SECOND STEP: We claim that  1/n  < u(Al(y))  < (n - 1)/n,  for all y in C. 

Fix some Y0 in C. As shown before, we know that  

1 1 
r(Hyo) < 2 -  - -  and r(Hz(yo) ) < 2 -  - -  

- n - 1  - n - 1  

and hence Remark l(c) and Gross's Theorem imply some Xl in Sy o and x2 in 

S~(uo ) such that  

A Ilxl - ~lld~yo(~) ___2 - - -  
YO 

(~o) Ilx2 -u l ldu4Y~ < 2 -  - -  

Therefore formula (*) yields 

1 
and 

n - 1  

1 

n - t "  

_ _i < u(Al(yo)) ( 2 -  1 ). + ( ( . ~ ) )  , 
n n - 1 y.A2__0__ 2 

and 
1 ( 

2 -  - <_ u(Al(yo))  " 2 + u(A2(yo)) 2 -  - -  
n 

From this we obtain 
1 n - 1  
- < u(AI(Yo)) <_ - -  n n 

1) 
n - - 1  

Now let 7~ = 2#{ei} (-- 2/ t{-ei}) ,  for all 1 < i < n. We get 

n 

Ilxll = E 7il(xlei)l + f c  I(xly)]dtt(Y)' 
i = l  

for all x in R n. 

Furthermore, define bk as 

bk = fA  Ilek -- all +2 IIek+ all dr(a),  

for all 1 < k < n. 

We expect to prove that  # is supported on precisely 2n points and since C • 0 

we continue: 
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THIRD STEP: We claim the existence of some 1 < i0 _< n, such that 7io = 0. 

Assume 71, . . .  ,7~ > 0: By definition of bk we have 

Hence 

Since 

n 

bk =/A E 7~ max([(eilek)l, ](eila)l)dv(a) 
i=1 

+ f f max(l(eklY)h I(alY)l)d#(y)du(a). 
J A J C  

n 

bk =/A E 7~l(eila)ld~'(a) -'~k /A I(ekta)ldu(a) 
i=1 

+ 7k +/C/A max(l(eklY)l' I(alY)l)du(a)d#(Y) 

+ f c  ~(u)ma~(](ekly) l ,  I(aly)l)du(a)d#(y). 

n 

1 = Ilall = ETil(eila)l +/c I(aly)ld#(Y)' 
i=1 

for all a in A, and recalling the definition of the subsets AI(y), A2(y) of A, we 

obtain 

bk----1-/A/C I(aly)'d#(y)du(a) - 7k /A I(ekla)ldu(a) 

+ 7k + f "(AI(y))I(ekly)Id#(Y) 
J C  

+ Iv ~(A2(y))[]y]]ld#(y). 
N o w  

/A /C ](a,y)]d#(y)dv(a) =- /c /A2(y) ,]yHldu(a)d#(y) 

=/c "( A2(Y) )IlYlIld#(Y). 
Therefore 

bk = 1 + 7k--7k /A ](ek]a)ld'(a) +/c L'(AI(Y))I(ek]y)ld#(Y)' 

for all 1 < k < n. 

Since Ilekll = It - ek l l  = 1 and 

bk = ~ I l e k  - alldu(a) + ltek + alldu(a) , 
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we have 
b k > 2  1 _ - - ,  for a l l l < k < n .  

n 

As shown before,  we know t h a t  

n - 1  
~(A~(y)) < - - ,  

n 

for all  y in C,  and  hence 

1 /A n - 1  2 - - < bk < 1 + 7k - "Tk I(ekla)ld'(a) + - -  n n 

for all  1 < k < n. 

Since 
P 

Ilekll = 1 = "Yk + ]c  I(ekly)ld.(~), 

for all  1 < k < n, we get  

.'Tk ( 1 - -  /A ,(ek,a)ldv(a)) >0, 

for all  1 < k < n. 

Isr. J. Math. 

c l(ek]y)ld#(Y), 

Now by a s s u m p t i o n  "~1, . . . ,  ~'n > 0 and  hence, by  summat ion ,  we ob t a in  

1> /A ~1= '(ek'a)ldv(a)= /A "a'lldl'(a)" 

Choose  some Yo in C: 

1> ~ ,]a]]ldv(a) = /il(yo) ],el,ida'(a)+/A,(yo) Ha']ldv(a) 

[ Ha,ld.(a) + / 2d~,(a) =.(Al(yo))  + 2-(A2(y0)) 
JA l(yo) JA~(yo) 

Hence  ,(A2(Yo)) =- 0, a con t rad ic t ion  to v(A2(Y0)) > 1/n. 

FOURTH STEP: We cla im the  exis tence of some ~ in C, such t ha t  U(Al(~))  -- 

(n - l)/n. 
R e m e m b e r  we have found some 1 < io _< n such t ha t  7~o = 0. Hence 

1 = Ileiolt = / c  I(ei~ and bio = 1 + Iv  v(AI(Y))I(ei~ 

S i n c e b i  o > 2 -  1 _ ~, we get  

/ c  [-~n l - v(Al(y))] '(eio'y)'d#(Y) <- 0" 
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Now 

/A l(aly)ld~'(a) = v( A2(y) )IlYlI~, 

for all y in C, and therefore the function 

y ~-~ u(Al(y)) = 1 Ilyll~ I(aly)ld~'(a) 

is continuous on C .  

Since (n - 1)In > y(AI(y))  for all y in C, we obtain 

I/ ,oL /I =0 ,  

for all y in C. 

But 

1 = Ile~oll = ]c  I(e~olY)ld,(y) 

implies some ~ in C, such that  (eio 19) ~ 0. It  follows that  

n - 1  
u(Al(9)) - 

n 

FIFTH STEP: We finish the proof. 

Now take ~ in C as found before (u(Al(9)) = ( n -  1)/n) and apply formula 
(.): 

1 n - 1  
2 - - ~  

n ~ . l l x -  ulldv~(u) + 1 ~  I I x -  ulldvz(~)(u), 
n 9 n z(~,) 

for all x in S. 

Assume that  

f s  Ilxo - ~lld~',j(~) < 2 - - -  
Y 

for some x0 in S~ C S. This would imply 

n - l '  

1 n - l (  1 / 1 1 
- -  < 2 -  + - . 2 = 2 - - ,  

n n n - 1  n n 

a contradiction. 

Therefore we get 

~ I[x-u[[dvg(u) > 2 -  1 
- n - l '  

for all x in S~. 
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Now r (H~)  < 2 - 1 / ( n -  1) and Remark 1(c) imply 

1 
r (U~)  = 2 - - - .  

n - 1  

By the induct ion hypothesis  we obtain tha t  H~ is isometrically isomorphic to 

l l ( n -  1). 

As shown above 1 

f s i l x -  u l i d v ~ ( u )  > 2 -  - -  - n - l '  

for all x in $9, and since H 9 is isometrically isomorphic to 11 (n - 1) we can apply  

L e m m a  3 and obtain 

n--I  

[Ix - uIldv~(u) - 2(n - 1) E [[fi - x[I + [[fi + x[[, 
i=1 

for all x in S~, where { f l , - . . ,  f , ~ - l , - f l , . . . , - f , ~ - l }  is the set of extreme points 

of the closed unit  ball {x e H v , Ilxll < 1} of H~. 

By Lemm a  2, (1) we have 

n--1 
1 1 

2(n - 1) E [ I f i -  x[[ + [ i f /+  x[[ ---- 2 - ----l'n- 
i=1 

for all x in S 9. 

Hence by formula (*) we get 

1 n - l (  1 ) 1 / s  2 - - < 2 - + - IIx - uIldvz(~)(u),  
n - n n 1 n z(~) 

for all x in Sy. 

Therefore  

f s  - ~lla-z(0)(~) = 2, 

for all x in S~. 

For x = f l , .  � 9  f n - 1 ,  - f l , . . . ,  - f n - 1  and by summat ion  we get 

z(~) 2(n - 1) Ei=l Ilfi - ull + llfi + ull - 2 dvz(~9)(u) = O. 

Hence there  exists some f0 in Sz(9) such tha t  

n--1 

1 E [ [ f i -  foil + ] ] f i + / o i l  = 2. 
2 ( n -  1) i=1 
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Therefore  IIf0 - All = IIf0 + All  = 2, for all 1 < i < n - 1. 

Since f l , . . .  , f , - 1 , - f l , . . . , - f n - 1  are the ex t reme points  of the  closed unit  

ball of a subspace  isometrical ly isomorphic to 1 l (n  - 1) (namely  H~),  we have of 

course IIA - f~ll -- IIA + fi l l  = 2, for all 1 _< i • j _< n - 1. 
S u m m i n g  up  we have 

IIAII = 1 a n d  IIA - fill = IIA + fjLI = 2, 

for all 0 <_ i ~ j _< n -  1. 

Finally, L e m m a  4 implies t ha t  (II( n, [[.[[) is isometrical ly isomorphic  to l l(n).  
| 

We need the  following l emmata :  

LEMMA 5: Let E be a two dimensional real Banach space. 

(1) Let P be a convex polygon in E. 

Then p(P)  is given by the sum of lengths over all sides of  P. 

(2) Let L and K be two compact convex subsets of E such that L C K .  

Then we have p(L) <_ p(K) .  

(For the definition of the Minkowski per imeter  p(.) see Section 2 of this paper . )  

For a proof  see L e m m a  11.1 in [17]. 

LEMMA 6: Let E be a two dimensional real Banach space and let O E  -- 

{x e E ,  [Ixl] <_ 1} denote the closed unit ball of E. Then we have 

6 <_ p (OE)  <_ S 

and p(OE)  = 8 i f  and only i r E  is isometrically isomorphic to/1(2).  

For a proof  see Satz 11.9 in [17]. 

LEMMA 7: Let  E be a two dimensional real Banach space and let K be a compact 

convex subset of  E.  Then we have 

p (K)  < 4 D ( K ) ,  

where p (K)  denotes the Minkowski perimeter and D ( K )  the diameter of  K .  

The  proof  is essentially the same as of Satz 11.9 (p(OE) <_ 8) given in [17]: 

Choose  some Auerbach  basis a l , a2  of E.  Let  gl ,g2 resp. hi ,  h2 be  the  sup- 

por t ing  lines of K with  direct ion given by a l  resp. a2. Choose points  xi E K N gi 

a n d y i E K N h i ,  for 1 < i < 2 .  

Fur thermore ,  define the  points  zij as zij = gi N hi, for 1 _< i, j _< 2. 
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Since al,a2 forms an Auerbach basis of E,  we get 

D ( g )  >_ [[Xl -x2[[  _> ][zll -z21[[ = I[z12 -z22]] 

and 

D(K)  > IIYl -Y21[-> Ilz11 -Zl211 = Ilz21- z22H. 

Lemma 5 implies 

p ( K )  < ]1z11 - z211[-~- Iiz12 - z2211 + ]1Zll - z1211 + Iiz21 - z2211, 

and the result follows. | 

Proof o f  Theorem 4: The proof is based on an idea given by L. Fejes T6th  in 

Theorem 1 of [10]. 

Let N > 1 and x l , . . .  ,XN be points in K. Assume that xl does not lie on the 

boundary of K: 

Since the function x ~-~ Y~N_2 [[x--xi[[ is convex on K,  we can find some extreme 

point e on the boundary of K such that 

N N 

Z l i e -  x, fl > IJ l -  ill 
i=2  i----2 

and hence the value of ~gd=  1 [[xi--x d [[ increases, if Xl is replaced by e. Repeating 

this process we can assume that  all given points lie on the boundary of K and 

w.l.o.g, let Xl, x 2 , . . . ,  Xy be the cyclical order of the given point set {Xl , . . . ,  XN }. 
Now define 

and let 

X N +  1 ~ gdl~ X N + 2  = X2~ � 9  ~ X 2 N - 1  ~-- X N _  1 

g �9 

for all 1 < k < [ y J .  

N 

sk = Z IIx, - x,+kll, 
i=1 

Furthermore, let A(i, k) denote the closed arc on the boundary of K joining 

xi and Xi+k (go in this direction: xi -+ xi+l -+ . . .  --+ x~+k) and let 6(i, k) be the 

length of A(i, k) (6(i, k) + Ilxi - x~+k II is equal to the Minkowski perimeter of the 

convex hull of A(i ,  k)). 
Now we have 

N 

Z k) = kp(g) ,  
4=1 
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for all 1 < k < LNJ, and since the triangle inequality forces 5(i, k) >_ 
we obtain 

Sk <__ kp(K), 

N for all 1 < k < L~-J. 
Of course, we have 

Sk <_ ND(K), 

for all 1 < k < [Nj  and 

L~-J-1 
2. ~ S k + S L ~  J, 

N k=l  

E 1Ix, - xjll = 
i , j = l  [ ~ ]  

2 - ~ S k ,  
k=l  

N-0(2), 

N =  1(2). 

For short let 
N 

1 
aN = ~-~ E IlXi -- XjlI. 

i , j = l  

Now 

1 ( LNj L~-J-1 
~ - <  ~ 2 Z k p ( ~ ) + 2  

k=l  k=L~J+l 

ND(K) + ND(K))  , 

in the case N = 0(2) and 

1(  [~j [~-J ) 
aN < - ~  2" E kp(K) + 2. E ND(K) , 

k=l k=l~J+l 

in the case N -- 1(2). 

Let 

c~(K) D(K) p(K) 
- 2  +1---C' 

~(K)=D(K) p(K) 
4 ' 

and note that  ~(K) > 0 by Lemma 7. 
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Routine calculations lead to 

a (K)  - ~r 

- P ( K ) i g ~ ,  

aN <_ 
o~(K) p(K) ~ - ,  

16N ~ 

N - 0 (4), 

N ~ 1 (4), 

N = 2 (4), 

N = 3 (4). 

Hence in the cases N --- 0, 1, 2 (4) we are done. 

But as before we also obtain 

1 [ L~-J+I L~J \ 
aN<_ ~7 ~2" ~ kp(K) + 2. ~ ND(K)}  , 

= k=t~J+2 / 

in the case N - 1 (2). 

N = 3 (4) yields 

[3D(K)  
O" N ~ a(K) - [ 

. 6 N + 5 ]  
p ( K ) ~ ]  . 

It is easy to see that  

/ g 2 N + 3  D(K) 3 D ( g )  ,g ,  6N+5~  
m a x [ p (  ) ~-~1~2 2N ' 2N P[ ) l---6--~-J >_0, 

for each N > 1, and therefore we have finished the proof. | 

Proof of Corollary 1: 
argument leads to 

As noted in the proof of Theorem 4, a simple convexity 

M(SE,  [[.[[) = M(OE, [[.1[)- 

Now apply Theorem 4 (of course D(OE) = 2). | 

Proof of Corollary 2: Let N > 1 and Xl,. . . ,XN in R 2 with [ [x i -  xjH2 < 1 for 

all 1 _< i , j  < N. Let X be the convex hull of {Xl, . . .  ,XN}. Now it is well known 

that  each compact convex subset Y of ~2 is included in some compact convex 

subset l > of R 2 such that  D(Y) = D(Y) and I7" is of constant width D(Y). 
Hence we can find some compact convex subset ) f  of constant width D(X) = 

D(X)  with X C_ ){. 
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By Barbier's Theorem (all compact convex subsets of the Euclidean plane of 

constant with A have perimeter lr.A) we obtain p(X) = 7r.D(f() = 7r.D(X). Since 

D(X) _~ 1 by assumption and applying Theorem 4 we get 

N 
1 1 r~ 

N2 ~ IIx  - xjil  _< M(X,  [I.112) _< M()~, ll-112) _< + 16'  
i , j= l  

and hence "7(/2(2)) < �89 + ~ .  

Now let X be a compact connected subset of R2 with D(X) = 1. As noted in 

Section 3 we have r(X, [[.[[2) _< M(X,  [I.[[2) and therefore k2 _< 7(/2(2)). | 

P roof  of Corollary 3: Let N > 1 and x l , . .  �9 xN in E such that  

[Ixi-xjH <_ l 

for a l l l _ < i , j < _ N .  

Let K be the convex hull of x l , . . . ,  XN. Of course we have D(K) < 1. Hence 

1 N 1 p(K) < 3 

i , j= l  

by Theorem 4 and Lemma 7. Therefore we get 

3 
7(E)  _< ~. 

It remains to show that  
3 

= 

1 = (0, �89 and = ( , - ~). We have Take Xl = (�89 x2 = ( - ~ , 0 ) ,  x3 x4 0 1 

4 
1 3 

16 ~ Itxi --'Till1 = 4'  
i , j=l  

and hence we are done. II 
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