ISRAEL JOURNAL OF MATHEMATICS 110 (1899), 125-151

AVERAGING DISTANCES IN REAL QUASIHYPERMETRIC

BANACH SPACES OF FINITE DIMENSION

BY

REINHARD WOLF

Institut fir Mathematik, University of Salzburg
Hellbrunnerstrasse 84, A-5020 Salzburg, Austria
e-mail: Reinhard. Wolf@sbg.ac.at

ABSTRACT

The average distance theorem of Gross implies that for each real N-
dimensional Banach space (N > 2) there is a unique positive real number
r(E) with the following property:  For each positive integer n and for all
{not necessarily distinct) z1,22,...,2, in E with |lz1])] = |lz2]| =--- =
[lznll = 1, there exists an x in E with ||z]| = 1 such that

=3l — ol = ()
i=1

The main result of this paper shows, that r(E) < 2—1/N for each real N-
dimensional Banach space E (N > 2) with the so-called quasihypermetric
property (which is equivalent to E is L1-embeddable). Moreover, equality
holds if and only if E is isometrically isomorphic to RV equipped with
the usual 1-norm.

1. Introduction

In 1964, O. Gross published the following remarkable resuit:

THEOREM A (O. Gross): Let (X, d) be a compact connected metric space. Then
there is a. unique positive real number r(X,d) with the following property: For

each positive integer n and for all (not necessarily distinct) z,,a, . ..

there exists an x in X such that

;Ll- S d(zi, ) = (X, d).
i=1
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For a proof of this Theorem see [11]. An excellent survey on this topic is given
in [8].

Remark 1: (a) In the situation of Gross’s Theorem we say that (X,d) has
the average distance property with rendezvous number (or averaging distance
constant) (X, d).

(b) D(X,d)/2 < r(X,d) < D(X,d), where D(X,d) denotes the diameter of
X. For a proof see Theorem 2 in [11].

(c) Graham Elton first generalized Gross’s Theorem in the following sense (for
a proof see [8]): Let (X,d) be a compact connected metric space and M*(X) be
the set of all regular Bore! probability measures on X; then r(X, d) is the unique
positive real number with the following property: For each u in M!(X) there
exists some z in X such that

/ d(z,y) du(y) = (X, )
X

Moreover, there are pg, vp in M(X) with

[ d(e,y) dpoly) < r(X,d) < / d(z,y) duoly),
X X

for all z in X.

Now let F be a real n-dimensional Banach space (n > 2). Consider the compact
connected metric space (Sg,d) where Sg = {z € E, ||z|| = 1} denotes the unit
sphere of E and d is the norm induced metric on Sg.

In [28] the rendezvous number r(E) of E is defined as

r(E) = r(Sg, d).
For example, in [20] Morris and Nickolas proved that

n— n)12
r(1%(n)) = -2-—1[F—(—§)]— foralln >2

/AT (Z2=1)
and in [28] it is shown that

r('(n)) =2 - ;1{; r(1%®(n)) = g, for alln > 2,

where [P(n) denotes R™ equipped with the usual p-norm.
Recently, the concept of rendezvous numbers was generalized to Banach spaces
of infinite dimension. See {3], [19], {28] and (30].
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This paper deals with a question given in [28]: Let E be a real n-dimensional
Banach space (n > 2). Is it true, that

r(E) <2- % (= r(l'(n)) foralln>2°?
n>

3|~

Up to now the conjecture r(E) < 2 — 2 was proved in the following two

cases:

First it was shown in (28] that 7(E) < 2 for all two dimensional real Banach
spaces and second the inequality 7(E) < 2 — 1/n was established in [29] for all
n > 2 under the assumption that F has a l-unconditional basis. Moreover, in
both cases it was proved that equality holds only in the case E = I!(n) up to
isometric isomorphisms.

The main part of this paper establishes the inequality r(E) < 2 — 1/n for
another class of finite dimensional Banach spaces, namely the class of all real n-
dimensional Banach spaces (n > 2} with the so-called quasihypermetric property.

Let us remark that quite recently a general upper bound for r(E) was

established in [3]:

1
E)<2— —
r(E) < 2+ (n— 1)2nt1’

for all real n-dimensional Banach spaces E (n > 2). (For a proof see
Proposition 7.3 in [3].)

The remaining part developes a general inequality concerning averaging
distances in two dimensional real Banach spaces:

It will be shown that for each compact convex subset K of a two dimensional
real Banach space the inequality

N
1 D(K) | p(K)
FZII%—%‘IIS 9 +T6—
ig=1
holds for all N > 1 and z;,z9,...,zy in K, where D(K) denotes the diameter
of K and p(K) denotes the Minkowski perimeter of K. (Note the connection to

a result given by L. Fejes Téth in [10] for K the Euclidean unit ball in R?.)

2. Basic background and notation

Let (X, d) be a compact connected metric space. The rendezvous number (X, d)
is defined as in Chapter 1 of this paper. With M*(X) we denote the space of
all finite non-negative regular Borel measures on X. The subspace M*(X) of
M*(X) consists of all non-negative regular Borel measures on X with total mass
one (the probability measures on X).
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A metric space (X, d) is called quasihypermetric if

Z cicjd(zi, ;) <0,

4,j=1

forall nin N,zy,...,2, in X and all ¢,...,¢, in R withey +-+-4+¢, =0. A
normed linear space (X ||.]|) is called quasihypermetric if the metric space (X, d),
where d denotes the norm induced metric on X, is quasihypermetric. Recall the
following examples for quasihypermetric spaces:

(1) The Euclidean space R™ for all n > 1.

(2) R"™ equipped with the usual p-norm for 1 <p <2 and alln > 1.

(3) All two dimensional real Banach spaces.

(For a proof of (1) and (2) see [25], for (3) see [32] and Theorem B mentioned
below.)

The spaces R" equipped with the usual p-norm for 2 < p < oo and all n > 3
are not quasihypermetric. (For a proof see [9] and Theorem B.)

There is a wide range of literature concerning equivalent properties to the
quasihypermetric property in classical geometry and functional analysis. For
example, see [5], [6], [9], [12], [13], [14], [15], [18], {22], [24], [25] and (32].

Collecting some of these results we have:

THEOREM B: Let n > 1 and consider some norm ||.|| on R*. The following
assertions are equivalent:

(1) The n-dimensional real Banach space (R", ||.||) is quasihypermetric.

(2) The n-dimensional real Banach space (R, ||.||) is isometrically isomorphic

to a subspace of L'[0,1]. ((R™,|.|]) is L'-embeddable.)

(3) The norm ||.|| admits a so-called Levy representation:

There is some p in M+ (,_1) on the Euclidean unit sphere 2,_1 of R* such
that

el = /Q \(aly)lduy), for all = inR™,
n—1

where (.|.) denotes the usual inner product on R™.

Without loss of generality one can assume that the measure p in M (Qp_1) is
even (u(A) = u(—A) for all Borel subsets A of Q,_1, where —A =
{z € Qn-1, —z € A}). Under this additional assumption p is unique.

(4) The closed unit ball of the dual space ({z € R, ||z||' < 1}) is a zonoid. (A
zonoid is the limit body, with respect to the Hausdorff metric, of a sequence
of zonotopes, where a zonotope is defined as the Minkowski sum of a finite
number of line segments.)
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For a proof combine Proposition 1, Corollary 1.1 and Corollary 1.3 in [25] with
Corollary 2.6 and Corollary 6.2 in [5]. For uniqueness see formula (1.1) in [24]
and Theorem 2.8 in [5].

Now let E be a real n-dimensional Banach space (n > 2). With

Sp={z€E, |zl =1}

we denote the unit sphere of §. The rendezvous number r(E} is defined as in
Section 1 of this paper.
Remember a basis a;,...,a, in F is called an Auerbach basis of F if

max |oy| < |laiay + - + anapll <Joa] 4+ + |l
1<i<n

for all a;,...,a, in R.

Forn>1and 1 <p < oo let iP(n) = (R, ||.||p), where |.||, denotes the usual
p-norm on R”.

Finally, the canonical basis of R™ is denoted by ey, ..., e, and (.|.) is the usual
inner product on R”.

3. The results

First we obtain

THEOREM 1: Let E be a real quasihypermetric Banach space. Then for all N > 1
and elements z,,...,zyN in X we have

N N
sx ol =zl + o+ il < 5 3 el + el
=1 i=1

for all z in P(xy,...,zx) C E defined as
N
Pil),..., = i L h that geeey i | <1p.
(z1 TN) {;aa: such that oy an € R with 1rSniaS.xN|041|_ }
From this we get

THEOREM 2: Let E be a real n-dimensional quasihypermetric Banach space and

let ay,...,a, be an Auerbach basis of E. Then we have
1< n—1
oo >l —aill o llo + il < 1+ "l
i=1

for all z in E with ||z|] < 1.
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Remark 2: The inequality established in Theorem 2 is sharp in the following
sense:

For each F there is at least one z (for example £ = 0) such that equality
holds. For E = [}(n) and the canonical basis we have equality for all x with
lzl]l7 < 1 (see Lemma 2, (1) of this paper). Moreover, if we left the quasi-
hypermetric property the result is false in general:

Let E =1%(3), a1 = (-1,1,1), a2 = (1,-1,1), a3 = (1,1,—-1). It is easy to
see, that a1, az,as forms an Auerbach basis of [*°(3) but

1 2
EZIIz—ai||+|lx+a,-[| =2>1+3, forz=(111).

i=1
Then we prove

THEOREM 3: Let E be a real n-dimensional quasihypermetric Banach space

(n > 2). Then we have
1

T(E) S 2 - ;I,‘
and equality holds if and only if E is isometrically isomorphic to 11 (n).

Now let E be a two dimensional real Banach space. Recall the definition of
the so-called Minkowski perimeter p(K) of a compact convex subset K of E:

p(K) = supl(P),
P

where [(P) denotes the sum of the lengths over all sides of a convex polygon P
inscribed in K, all lengths measured in the norm induced metric.

The next result is a generalization of a Theorem of L. Fejes Téth (see Theorem 1
in [10]) concerning averages of distances in the Euclidean plane. We have

THEOREM 4: Let E be a two dimensional real Banach space and let K be a

compact convex subset of E. Then for al N > 1 and z,,...,zy in K we have
N
1 v D(K)  p(K)
Nz Y llzi— a5l < — Tt
4,3=1

where p(K) denotes the Minkowski perimeter and D(K) the diameter of K.

Various papers deal with questions concerning another interesting constant
involving averages of distances:
Let (X, d) be a compact metric space and define
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For example, see (1], [2], [4], [7], [10], [16], [21], [23], [26] and [31].
As a simple consequence of Remark 1(c) and the fact that

M(X,d)= sup // z,y)du(z)du(y)

REMI(X)

we have

r(X,d) < M(X,d)

for all compact connected metric spaces. (For details and the relation between
these two constants in quasihypermetric compact connected spaces, see [16] and
i311.)

Now in [28] it was shown that
p(OE)

6 ’

for all two dimensional real Banach spaces (p(OFE) is the Minkowski perimeter
of the closed unit ball OF of E}.
Applying Theorem 4 we obtain the stronger inequality:

rE) <

COROLLARY 1: Let E be a two dimensional real Banach space. Then we have

OF
Mz, ) <1+ 222
p(OE) defined as above.

Finally, let us draw the reader’s attention to an unsolved problem in two
dimensional Euclidean distance geometry:
What is the value of

v(2(2) = sup N2 Z lz: — z;)l2 ?

i,j=1

(For more detailed information see, for example, [16].)

It is conjectured (see [26]) that y(I2(2)) = M(T,||.|l2) where T denotes the
Reuleaux triangle of diameter one (numerical calculations show that
M(T,||-ll2) ~ 0,6675277).

In [21] the positive real constant k; is defined as

k2 = supr(X, ||-l2),

where X ranges over all compact connected subsets of the Euclidean plane with
diameter one.
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The authors showed

0,6675276 < ky < 0,7182336.

We improve the given upper bound:

COROLLARY 2:
1
<y(? S+ (m .
k2 <~(1°(2)) < 2+16 (= 0,6963495)

Finally, we note that if we replace the Euclidean distance by the 1-norm
induced distance and ask for the analogous constant y(I*(2)), the problem turns
out to be much easier:

COROLLARY 3: Let E be a two dimensional real Banach space. Define

AE) = o 2 i — .

N21, 2100 zNE
lz; -zl <1 i,j=1

Then we have
(1) v(E) <%,
2) (' 2)=4%.

4. The proofs
We need the following

LEMMA 1: Letn>1and aq,...,ap,ainRwitha > 0,a; >0, foralll1 <i<n
and a < a1 + - -+ + a,. Then we have

% z": max{q;, @) Z a; + n—_la
i=1

Moreover, equality holds if and only if
lL.ag=-=a,=a=0.
2. There is some 1 < iy < n, such that
(o798 > 0 and oy = = Qlip-1 = Qg =--=qa, =0.
3. There are at least two indices 1 < 13 < is < n, such that
a;y > 0,04, >0and: a=0ora=o0;+--- +an.

The proof is straightforward.

Proof of Theorem 1: Consider the finite dimensional subspace of E generated by
the elements z1,...,zx. The definition of the quasihypermetric property implies
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that this subspace is quasihypermetric too. Now since each finite dimensional real
Banach space is isometrically isomorphic to some (R, |l.]|} (n > 1, ||.]| 2 norm on
R™) and of course the quasihypermetric property is invariant under isometries,
it remains to show that:

Let n > 1 and ||.|| be a quasihypermetric norm on R™. Furthermore let N > 1
and y1,...,yn be elements in R". Then we have

N Z lys =l + llgs + 2l < % Z el -+ ol

for all z in P(yy,...,yn) C R™ defined as

N

P(y1,...,yn) = {2a1y1 , such that aq,...,ay € R and 123575\7 || < 1}.
1=

By Theorem B (3) there exists some g in M+ (€,_1) on the Euclidean unit sphere
Q,_1 of R™ such that

o]l = / (ely)lduly), for all « € R".
n—1

Now let z € P(y1,...,yn) and y € (1. Since z € P(y,...,yn) we can find
some aq,...,0, € R with max;<;<n |o;] < 1 such that z = Ef’:l a;y; . Hence

we get
|(z[y)|

Za, yily)| < ZI (3ily)I-

Take a = |(z|y)| and a; = |(y:]y)| for 1 <i < N. Lemma 1 implies that

N
Zmax w:ly)l, (=zly)]) Z )] + =L k).

Therefore

N N

1 1 N-1
o S — i)l + 1+ 2l < 2 D2 1wl + ),

=1 =1

for all y in Q,_4.
Integration over €),_; with respect to y finishes the proof. ]

Proof of Theorem 2: As mentioned in the proof of Theorem 1 we can assume
that @,...,a, is some Auerbach basis of the space (R™,|.||]) (n > 1 and ||.|| a
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quasihypermetric norm on R™). Since ay,...,a, is an Auerbach basis of R the
subset P(a;,...,a,) defined in Theorem 1 fulfills the relation

P(al,... ,a'n) 2 {(l: € Rn, ”.’l}“ < 1}

Of course ||a;|| = -+ = ||ax|| = 1 and hence the result follows by Theorem 1.
|

Before showing Theorem 3, we prove the following lemmata:

LEMMA 2: Let n > 2. Then we have

1 < n—1
1) g ol el bl el =14 2
for all z in [*(n) with ||z||e < 1.
2) Lz = zoll + llz + zoll) <2 - ~
( 9 z T z o > 'I’L’

for all z in I'(n) with ||z|| = 1, where zq in [}(n) is defined as zo = (4

;’ cvey
Moreover, equality holds if and only if z € {ey,...,€n,—€1,...,—€n}.

3=
~—

The proof is straightforward.

LEMMA 3: Let v be a probability measure on the unit sphere Sp(y) of I*(n)
(n > 2) and assume that

1
[ le-slaw 22~
Sit(ny

for all x in Sy (). Then we have

1 n
V= %Zée“ +6_ei,

i=1

where 6,,(0_.,) denotes the point measure on the i-th canonical vector e;(—e;).

Proof: Let zp = (1/n,...,1/n). By assumption we get

— 1
S 2 7

t1(n)

Applying Lemma 2, (2) we obtain

supp(v) C {e1,..-,€ny—€1,...,—€n},
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where supp(v) denotes the support of v.
Hence there are a1,...,0n,B1,..., 00 > 0, Y o @; + B; = 1, such that

n
V= Zai(sei + ﬂi5—ei'
i=1
The assumption again implies
° 1
S aulles — el + Aillen +eill 22—,
=1

foralll1 <k <n.
Hence o; <1/2n and §; < 1/2n, for all 1 <4 < n, and therefore

LEMMA 4: Let E be a real n-dimensional quasihypermetric Banach space
(n > 2). Define

N(E) =max{k >2,3 z1,...,2 € Sg with l|z; — zj|| = ||z; + ;]| =2,

forall 1 <i#j<k}.

Then we have N(E) < n and equality holds if and ounly if E is isometrically
isomorphic to I*(n).

Proof: By Theorem B, (2) we can assume that E is an n-dimensional subspace
of L[0,1]. For arbitrary real numbers «, 3 we have

la+ 8|+ o — 8] < 2(|e] +18]),

and equality holds if and only if a8 = 0. Integration of this inequality shows
that for every f,g € L[0,1],

IS +gll +11F = gll <2 £ + llgl)

and equality holds if and only if f,g are disjointly supported, up to a set of
measure zero. Therefore, if f, g are unit vectors satisfying ||/ +g|| = ||f —g|| = 2
they are disjointly supported (up to a set of measure zero) and, in particular,
linearly independent. Hence we get N(E) < n. In the case N(E) = n, E contains
n disjointly supported functions (up to a set of measure zero) and therefore E
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is isometrically isomorphic to I'(n). Of course N{I'(n)) = n and hence we are
done.

Proof of Theorem 3: Let E be a real n-dimensional quasihypermetric Banach
space (n > 2). Choose some Auerbach basis a1,. .., an of E (such a basis always
exists, a proof is given, for example, in [27]).

Theorem 2 implies that

1 & 1
_— —a; Jl<2-=,
o ;:1 llz — a:ll + ||z + aq| < -

for all z in Sg. Now Gross’s Theorem (see Theorem A in Section 1) guarantees
the existence of some g in Sg, such that

1 n
NE):gﬁZ;mm—am+wmo+mm

and hence r(E) < 2—1/n.
Lemma 2, (1) implies that

1 & 1
oo D llei—all +lles + 2l =2 - =,
i=1
for all z in Sj1 () and therefore Gross’s Theorem again leads to

r(in) = 2 %

Now assume that r(E) = 2 — 1/n. It remains to show that F is isometrically
isomorphic to 11(n).

We continue by induction on n.

n=2:

In [28] it was shown that r(E) = 3 if and only if the two dimensional real
Banach space E is isometrically isomorphic to [!(2).

n—1l—n:
Choose some Auerbach basis a4, ...,a, of E and define the norm ||.|l¢ on R®
as
“(.’L‘1, - ,.Tn)“() = ||:c1a1 +---+ znan”, T1,...,%n €ER;
then T: E — R*, z1a1 + -+, +Tnan, — (z1,...,Z,) becomes an isometric

isomorphism from E to (R",|.{o)-
Since the definition of r(E) is invariant under isometric isomorphisms, we have
|
the following situation (for convenience replace ||.|jo by ||-||):
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Let n > 3 and ||.|| be a quasihypermetric norm on R™ such that

[zl < llzll < lllis,

for all z in R™ (the canonical basis ej,...,e, forms an Auerbach basis of
(R™,]I-11)) and assume .
(R ) =2~
We have to show that (R™, .||} is isometrically isomorphic to I1(n).
By Theorem B, (3) there exists a unique even measure g in M1 (Q,_;) on the
Euclidean sphere 2,,_; of R™ such that

loll = | I(els)lduts), for allz iR
n—1

For short let S = {z € R, ||z|| = 1} be the unit sphere of (R", ||.||). Furthermore,
define f: S — R as

1 :
f(x)_%;||x~ei|l+i|m+ei”, forall zin S
and let
ACS, A={zeS, flz)=2-1/n}.

By Gross’s Theorem and r((R",|.||)) = 2 — 2 it follows that A is a non-empty
compact subset of S.

Now fix some yo in supp(p) “{e1,...,en, —€1,...,—€n} (supp(y) denotes the
support of 1) and let a be an element of A.

Lemma 1 implies

—Zmaxu (et < 23 Kedl +

—i(aty),

7

for all y in ©,_1.
Since f(a) =2 - 1, we get

1 o n—
. h;uei;yn +

Hence Lemma 1 again leads to

“I(aly)l ~ = Y max(i(aly)], eso)) | duty) = .
=1

(aly) =0 or I(alyo)l = Y I(eslyo)l-
=1
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In the case [(alyo)| = Y7, (eslyo)| = lyolly we obtain:

Since yo & {€1,...,€n,—€1,...,—€n} choose 11,72 € {1,...,n} as small as
possible, such that iy < 42, (yolei,) # 0 and (yoles,) # 0.

Now ||a||ec < |la]] =1 implies

((a’|ei1)a (a|ei2)) = (sgn (yOIeil)a sgn (y0|ei2))

or
((ales,), (alei,)) = —(sgn (yolei, ), sgn (vole:,))
and hence |la||; > 2.
Let z(yo) € R™ be defined as

z(yo) = sgn (yolei,)es, — sgn (Yoles; eiy;

then
z(yo) #0 and (z(yo)la) = 0.

For short let C = supp(u) ~{e1,...,en,—€1,...,—en}. Corresponding to yo
in C we define

Hy, =([yo]™, 1)),
H,(yo) =((2(30)]*, [1-1)-
Hy, and H,(,,) are both (n — 1)-dimensional real quasihypermetric subspaces of

(R, ||.Il)- For short let Sy, be the unit sphere of Hy, and S,(,,) be the unit
sphere of H, ().

Summing up we have the following situation:
Each y in C leads to subsets A;(y) and A2(y) of A such that

Ai(y) U Aa(y) =A,
Ai1(y) N Az(y) =0,

A1(y) = {a € A,(aly) = 0} is a compact subset of the unit sphere S, of H,,

As(y) = {a € A,|(aly)| = |lyll1} is a compact subset of the unit sphere Sa(y) of
H,) and

llalls > 2 for all a in Aa(y).

Now we consider two cases:
() C=0
This implies

n
lz|| = Z'yil(xleiﬂ for some y1,...,7, > 0.
i=1
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Since |le;]| = 1, for all 1 < ¢ < n, we get ||z|| = Y, |(z]e;)| = ||z[l1 and
we are done.

(2) C#0
Since 7((R™, ||.]l)) = 2 — 1/n, Remark 1(c) implies the existence of some v
in M1(S), such that

1
/ |z —ulldv(u) >2—-—, forallzinS.
S n

1
/Sf(u)du(u) >2— o

but f(u) <2 - L for all w in S and therefore we get

Hence

supp(v) C A.

FIRST STEP: We claim that 0 < v(A;(y)) < 1forall y in C.
Assume that v(A4;(yo)) = 0, for some yo in C. Since

[ e =ullavia = [ flo = uav(u) / ool

for all z in S, we get

2 Lo / 2 — ulldy(u),
n Az (yo)

for all z in S.
Now consider v as an element of M'(S,,,)). As shown before, we know that

1
r(Hay)) <2- —

and hence Gross’s Theorem (see Remark 1(c)) implies some zo in S,(y,), such

that
[ o —uldvtw s2- =L,
A2(yo) n—1
a contradiction to xg € S,(,) C S.
The case v(A;(yo)) = 1 is treated as the case v(A;(yp)) = 0 (consider v as an
element of M(S,,), A1{yo) C Sy, ). Hence 0 < v(A;(y)) < 1forall y in C.

Choose some y in C. Then we have

/A Iz — ulldi(u) = /A el + /A el

—(Ay(v) /A el
+ v(Aa(w)) /A el ),
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forall z in S.
Now let v, € M(Sy) be vy, = v/v(Ai(y)) on Sy and v,y € M(S,y)) be
V() = v/v(Az(y)) on S,(,). Hence we obtain the formula

() 2= 2 <o) [ o= uldiy )+ v(4a(0) [z~ uldvsg o),

Satw)
for all z in S and all y in C.

SECOND STEP: We claim that 1/n < v(A;(y)) < (n—1)/n, for all y in C.
Fix some yg in C. As shown before, we know that

1
and 7(Hyyy)) <2— —

r(Hy,) <2-— —

n _—
and hence Remark 1(c) and Gross’s Theorem imply somne z in S, and z; in
S.(yo) Such that

1
/ lz1 — u||dyy, (uv) <2 — p—) and

Yo

1

/ “IEZ — u||dyz(y0)(u) 32 - n_1 .
S:(y0)
i

Therefore formula (%) yields

2 - % < v(A1 (%)) (2 - ﬁ) + v(A2(yo)) - 2
and

n—1

2L <ot 2+ vt (2- —15).

From this we obtain 1 1
n —

—<v(A < -,
= <w(Ailw)) <

Now let v; = 2u{e;} (= 2u{—e;}), for all 1 <i < n. We get
n

el = 3" l(ales)| + /C (ely)ldu(),
i=1

for all z in R™.

Furthermore, define by as

bon [ lenzaltlonvaly,

foralli1<k<n.
We expect to prove that p is supported on precisely 2n points and since C #
we continue:
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THIRD STEP: We claim the existence of some 1 < 45 < n, such that v;, = 0.
Assume 71,...,7, > 0: By definition of b; we have

m:ﬁghmmmMMmemwm

+Aﬁmmwmmwmmmww.

Hence
/Z’n |(e;]|a)ldv(a) 'yk/ [(ex|a)|dv(a)
+%+/A ((ex )], |(aly))dv(a)du(y)
// (I(ex )], (aly))dv(a)duy).
Az(y)
Since

1= ol = et + | laly)iduts)
=1

for all @ in A, and recalling the definition of the subsets A;(y), A2(y) of A, we

obtain
—ﬂ—//www Jdu(a %/wmuu
+%+/wm@mmmww
C
5AWMwmwﬂmm
Now
//medv /Ammwuw
=mewmwwmy
Therefore

be =1+ — vk/Al(ekla)IdV(a) +/CV(A1(y))I(ek|y)ldu(y),

foralll <k <n.
Since ||ex|l = || — ex|| = 1 and

= % (/s llex — al|dv{a) + /S llex + a”dv(a)) ;
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we have 1
bp>2——, foralll <k<n.
n

As shown before, we know that

v(Ay) < 2L

n

for all y in C, and hence

2- 2 <t <= [ Nl + = [ fedn)lduto),

forall1 <k <n.
Since

lexll = 1 =y + /C (exl)ldu(),

for all 1 < k <n, we get
1
|\ = — [ |(exla)ldv(a) ) >0,
n A
forall1 <k <n.
Now by assumption 7y,...,7, > 0 and hence, by summation, we obtain

1> /A S lfexlaliv(a) = /A lall1dv(a).

Choose some g in C"

1 Z/A lla|lidv(a) = Ll(yo) ||la|l dv(a) +A2(y0) |la|l1dv(a)

. /Al(yo) lafete) + /AQ(yU) 2dv(a) = v(A1(yo)) + 2v(A2(v0)).

Hence v(A2(yo)) = 0, a contradiction to v(Aa(ye)) > 1/n.

FOURTH STEP: We claim the existence of some § in C, such that v(A4;(7)) =

(n—1)/n.

Remember we have found some 1 < iy < n such that ;, = 0. Hence
1= fewll = [ leuldldutr) snd by =1+ [ v o)l(cals)dn(o)

Since b;, > 2 — 1, we get

/c [n ; Sy (A (y))] [(eso|y)ldu(y) < 0.
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Now

| Natwlavia) = v s(u)ul,
for all y in C, and therefore the function
v 2la) = 1= oo | (aly)ldvta)

is continuous on C.
Since (n — 1)/n > v(A;(y)) for all y in C, we obtain

n

V_l—vmawﬂu%w”:m

for all y in C.
But

1= llewll = [ Itewlnlduty)
implies some § in C, such that {e;,|7) # 0. It follows that

v( @) =21,

FIFTH STEP: We finish the proof.
Now take § in C as found before (v(A4;(7)) = (n — 1)/n) and apply formula

(%):
1

n

(u) + /' 2 — ulldv, g (),

Z(y)
for all z in S.
Assume that

1
s llzo — ulldry(u) <2 - o1

v

for some zp in Sz C S. This would imply

1 -1
29— <= (2— ! >+3-2=2—1,
n n n—1

a contradiction.
Therefore we get

‘/Im—uMw W2 o,

for all « in Sj.
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Now r(Hg) < 2—1/(n — 1) and Remark 1(c) imply

1

T(Iyg) =2 o 1.

By the induction hypothesis we obtain that Hy is isometrically isomorphic to
Mn—1).
As shown above

1
[ e 22 - 2,

for all z in Sy, and since Hy is isometrically isomorphic to *(n—1) we can apply
Lemma 3 and obtain

/ l — ulldvg(u) = Zuﬂ 2+ 1fi + <,

for all z in Sy, where {f1,..., fn—1,—f1,..., —fn_1} is the set of extreme points
of the closed unit ball {z € Hy, ||z|| < 1} of Hy.
By Lemma 2, (1) we have

1 1

n—1
ﬁm_—l—);”fi_w”+l|fi+x||:2_m,

for all z in Sj.
Hence by formula () we get

1 n-1 1 1
e R L L

z(9)

for all z in Sy.

Therefore
[ o= sl =2,
Sz
for all z in Sj.
Forz= f1,..., fn_1,—f1,. .-, —fa—1 and by summation we get

e

1 n—1
/Sz(m [2(71——1) ; I fi —wll + 1 fi +ull = 2| dvy(g(u) =

Hence there exists some fo in S,(5) such that

1 n—1

2 =T) 2 s ol + e foll =2
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Therefore ||fo — fil| = ||fo+ fil| =2, forall 1 <i<n—1.

Since fi1,..., fn_1,—f1,.-.,—fn—1 are the extreme points of the closed unit
ball of a subspace isometrically isomorphic to [*(n — 1) (namely Hj), we have of
course ||fi — fill = |lfi+ fill =2, forall 1 <i#j<n-—1.

Summing up we have

Ifill=1 and |Ifi = f5ll = fi+ £l =2,

forall0<i#j<n—1.
Finally, Lemma 4 implies that (R",|.||) is isometrically isomorphic to I!(n).
|

We need the following lemmata:

LEMMA 5: Let E be a two dimensional real Banach space.
(1) Let P be a convex polygon in E.
Then p(P) is given by the sum of lengths over all sides of P.
(2) Let L and K be two compact convex subsets of E such that L C K.
Then we have p(L) < p(K).

(For the definition of the Minkowski perimeter p(.) see Section 2 of this paper.)
For a proof see Lemma 11.1 in [17].

LEMMA 6: Let E be a two dimensional real Banach space and let OF =
{z € E, ||z|| < 1} denote the closed unit ball of E. Then we have

6 <p(OE) <8
and p(OE) = 8 if and only if E is isometrically isomorphic to 11(2).
For a proof see Satz 11.9 in [17].

LEMMA 7: Let E be a two dimensional real Banach space and let K be a compact
convex subset of E. Then we have

p(K) < 4D(K),

where p(K) denotes the Minkowski perimeter and D(K) the diameter of K.

The proof is essentially the same as of Satz 11.9 (p(OF) < 8) given in [17]:

Choose some Auerbach basis a1,a2 of E. Let gy, 9o resp. hi,hs be the sup-
porting lines of K with direction given by a; resp. a2. Choose points ©; € KNg;
and y; € KNhy, for 1 <i<2.

Furthermore, define the points z;; as z;; = g; N h;, for 1 <4, j < 2.
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Since a1, a; forms an Auerbach basis of E, we get
D(K) 2 ||lz1 — z2]| = |l211 — za1]| = ||z12 — 222l
and

D(K) > |ly1 — yell > ||lz11 — 212 = ||z21 — 222]).

Lemma 5 implies

p(K) < |lz11 — za1ll + 212 — 222|| + 1211 — 212l + [|221 — 222]],

and the result follows. ]

Proof of Theorem 4: The proof is based on an idea given by L. Fejes Téth in
Theorem 1 of [10].

Let N > 1 and zy,...,zn be points in K. Assume that z, does not lie on the
boundary of K:

Since the function z — Ziz ||lz—;]|| is convex on K, we can find some extreme
point € on the boundary of K such that

N N
Yolle—zll =) oy —ail
i=2 i=2

and hence the value of Zf;zl |lzi—z;|| increases, if z is replaced by e. Repeating
this process we can assume that all given points lie on the boundary of K and

w.lo.g. let z1,x2,. ..,z N be the cyclical order of the given point set {z1,...,zn}.
Now define
IN+1=7T1, ZIN+2=22, ..., T2N-1=2IN-1
and let

N
Sk =Y lle: — zigkl,
i=1

forall1 <k < [—I}J

Furthermore, let A(%,k) denote the closed arc on the boundary of K joining
z; and x; 4 (go in this direction: z; — z;31 = -+ —= Z;4«) and let 4(%, k) be the
length of A(Z, k) (6(i, k) + ||z; — zs4k]| is equal to the Minkowski perimeter of the
convex hull of A(Z, k)).

Now we have

N
> 80, k) = kp(K),
i=1
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forall 1 < k < | ¥ |, and since the triangle inequality forces 6(i, k) > ||z; — s,

we obtain
Sk S kp(K)7
foralll <k <|&].
Of course, we have
Sy < ND(K),

forall 1 <k < [%]and

For short let

1 N
ON = N2 Z “fﬂi"‘mj“-

i,j=1

Now

in the case N = 1(2).

Let
() =D(x) - O,

and note that (K) > 0 by Lemma, 7.
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Routine calculations lead to

on <

o(K) - [p(K) 233 - 5], N=3(4).

\

Hence in the cases N = 0,1,2 (4) we are done.

But as before we also obtain

1 i+
on <o (2 > kp(K)+2-
k=1 k

(4
Y ND(K)|,
{142

in the case N =1 (2).
N =3 (4) yields

ow < ath) - | 250 (0 S|

It is easy to see that

9N +3 D(K) 3D(K) 6N +5
— — —_] >
max <p K)Jenz ~av > an P Tgaz ) 20
for each N > 1, and therefore we have finished the proof. 1

Proof of Corollary 1: As noted in the proof of Theorem 4, a simple convexity

argument leads to
M(Sg,|.Il) = M(OE, |.II)-

Now apply Theorem 4 (of course D(OE) = 2). ]

Proof of Corollary 2: Let N > 1 and z1,...,zn in R? with ||lz; — z;{]2 < 1 for
all 1 <1i,5 < N. Let X be the convex hull of {z1,...,zx}. Now it is well known
that each compact convex subset Y of R? is included in some compact convex
subset ¥ of R? such that D(Y) = D(Y) and Y is of constant width D(Y).

Hence we can find some compact convex subset X of constant width D(X) =
D(X) with X C X.
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By Barbier’s Theorem (all compact convex subsets of the Euclidean plane of
constant with A have perimeter 7.)) we obtain p(X) = 7.D(X) = 7.D(X). Since
D(X) <1 by assumption and applying Theorem 4 we get

N
i c 1 =
2 2 Nl = 51l < MK, L) < MOE, ) < 5+ 7,
ij=1
and hence 7(1%(2)) < 3 + %.
Now let X be a compact connected subset of R? with D(X) = 1. As noted in
Section 3 we have 7(X, |[.]l2) < M(X,|/.ll2) and therefore ky < v(I*(2)). 1

Proof of Coroilary 3: Let N > 1 and z;,...,2x in E such that
lz: —z;|l <1

forall 1 <i,j <N.
Let K be the convex hull of z1,...,zy. Of course we have D(K) < 1. Hence

N
$lexi_$jllsé+p(l—?i

i,4=1

>

M

by Theorem 4 and Lemma 7. Therefore we get

v(E) <

| Qo

It remains to show that 3
v(11(2) = i

Take 71 = (1,0), 2 =(—3,0), 3 = (0, 1) and x4 = (0,—3). We have
4
1 3
6 >l —alh = 7
t,j=1

and hence we are done. 1
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